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When to Use Traditional Genomics
• When you have:

◦ Only one or a couple of microbes of interest
◦ And they are culturable
◦ And you care about their genome sequences, not their abundance in the sample(s)

• The good news:
◦ This approach can identify plasmids associated with the bacterial chromosome
◦ Software for de novo (from scratch) assembly of short reads into genomes                                                       

is getting better
§ With high coverage, existing tools can sometimes reach ~98% completeness

• The bad news:
◦ Repeat regions (like those from transposons) are really hard to assemble

§ 100% complete reference genomes still require specialized skills and protracted effort

◦ Most microbes aren’t easily culturable in the lab
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When to Use Single-Cell Genomics 
• When you need reference genome(s) and can’t culture, e.g. functional analysis of soil microbes

◦ Community is EXTREMELY heterogeneous (most common organism ~1% of total); shotgun won’t assemble
◦ Community members are too hard to culture (~1% grow in standard medium)
◦ So: consider single-cell genomics to generate a reference database, then shotgun for abundance information

• When you have the time, money, and equipment
◦ Having single-cell-level understanding of microbial 

communities is wonderful if we can get it!

• The good news:
◦ See traditional genomics, plus … this is really possible!

• The bad news:
◦ Getting single cells is expensive and/or time-consuming
◦ This gets around culture issues but not assembly ones
◦ Lots of amplification is required, with potential for bias

https://commons.wikimedia.org/wiki/File:Single_Cell_Genome_Sequencing_Workflow.pdf
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Marker Gene Metagenomics Basics
• Approach: PCR amplicons of a conserved constitutive gene (a "marker gene") to determine 

identity and abundance of microbes present
◦ Usually the “conserved constitutive gene” of choice is 16S rRNA

§ The small sub-unit (SSU) of bacteria’s ribosome
§ Excludes eukaryotic DNA as eukaryotes’ SSU is 18S

• 16S rRNA is widely conserved across bacteria and archaea, providing shared primer sites
◦ Yet also has 9 hypervariable regions: can be used to differentiate organisms and build phylogenetic trees

• Can’t study fungi with 16S (they don’t have it) nor 18S (evolves too slowly)
◦ Internal transcribed spacer (ITS) is standard fungi marker gene



When to Use Marker Gene Metagenomics
• When your sample is MOSTLY made up of host DNA, e.g. tumor samples

◦ Shotgun reads will also be mostly host DNA, with few left over for the microbes
◦ Use 16S rRNA instead, as the primers exclude eukaryotic DNA from amplification

• When you’re cheap J

• The good news:
◦ Target gene studies are slightly cheaper to prep and sequence than shotgun ones
◦ Analysis software is mature, and many studies can be analyzed on a laptop
◦ Known taxa can be detected with very low (100s of reads) sequence depth

• The bad news
◦ No target gene distinguishes all microbes well

§ And, for a given gene, no primer pair distinguishes all microbes well

◦ No other genome information (outside target gene) is captured



Marker Gene Analysis Workflow

• Most critical analysis choices:
◦ How to normalize before diversity calculations
◦ What α and β diversity metrics to examine

§ Some are phylogenetically aware, some aren’t
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Common Issues in Marker Gene Studies
• Neglecting metadata

◦ Analysis can not test for effects of, or discard bias from, categories you didn’t record!

• Picking novel 16S primers—not all created equal
◦ Earth Microbiome Project recommends 515f-806r primers, error-correcting barcodes 

• Not taking precautions to support amplicon sequencing
◦ Some Illumina machines require high PhiX, low cluster density

• Selecting an inappropriate reference database
◦ E.g., Greengenes (16S) reference database when sequencing ITS

• Expecting species-level taxonomy calls
◦ Most sequence variants only specify to family or genus level

• Using inappropriate statistical tests
◦ Taxa abundance requires a compositionality-aware test like ANCOM
◦ Differences in β diversity distances across groups requires test like PERMANOVA, not ANOVA
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Shotgun Metagenomics Basics
• Just fragment and sequence, try to figure out what it means in analysis!
• Reference-based

◦ Map shotgun reads to database of known, complete reference genomes
◦ Find identity and abundance

§ Analogous to approach for single-organism RNASeq—but more complex

◦ Usually not feasible: too few references known 
§ Exceptions: human gut, mouth, vagina

• Assembly-free
◦ Map reads to known genomes and guess taxonomic identity
◦ Translate reads and map to protein family database to find functionality

• Assembly-based
◦ Assemble reads into (multiple) genomes—or at least contigs
◦ Place contigs in phylogeny to find taxonomic identity
◦ Detect genes, lncRNAs, operons: find functionality linked to identity



When to Use Shotgun Metagenomics
• When target genes can’t tell your microbes apart

◦ E.g., Sporosarcina psychrophila & Bacillus anthracis

• When you want microscopic eukaryotes too
◦ Protists, fungi, algae

• When you want to see functional detail
• The good news:

◦ Sequencing has gotten cheaper, so we can do more
◦ Cloud computing, better aligners, and better 

assemblers make analysis possible for biologists

• The bad news:
◦ Can’t associate plasmids with hosts
◦ Read analysis is limited, contig analysis is hard
◦ Data is large and analysis tools are still maturing
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Shotgun Analysis Workflows

• Reference-based not shown--simple
• Assembly-free

◦ Easier, fewer steps
◦ Gets taxon and functional info but can’t link them

• Assembly-based
◦ Lots more work but joins taxon/function info
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Common Errors in Shotgun Studies
• Not having analysis and storage plan

◦ Shotgun sequencing data can easily be 10-50 Gb compressed
§ When uncompressed files are over 100 Gb, and analysis creates intermediate versions, doesn’t take long to fill your hard drive

◦ Both assembly-free and assembly-based approaches require lots of alignment
§ This is time-consuming on 10s to 100s of millions of reads, even with fast aligners

◦ Assembly-based approaches are real memory hogs

• Failing to extract host reads
◦ Unlike 16S, shotgun amplifies host DNA too
◦ Must be aligned to host genome and removed

§ This is a big problem if you don’t have a host genome

• Not filtering amplified duplicates
◦ Amplifying low-abundance inputs creates uninformative duplicates
◦ These can swamp real reads



Conclusions
• Microbiome research reinforces that life is inherently interconnected and interdependent

• Metagenomic studies allow insight into a whole interdependent community at once

• 16S metagenomics is a tried-and-true workhorse
◦ However, it can still bite if you mishandle it (e.g., use non-compositionality-aware statistics)

• Shotgun metagenomics is no longer “bleeding edge”
◦ But analysis stage still causes pain for non-computationalists!

◦ Assembly-free analysis is easier

◦ Assembly-based gets us closer to what we really want to know

• The only constant is change
◦ New techniques are always being developed

§ New statistical differential abundance tests

§ Easier shotgun analysis pipelines

§ Longer-read sequencers

◦ If you can, save your samples: may be easier to re-sequence later than to reanalyze
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• For many applications, no longer necessary to buy, administer, and upgrade dedicated clusters
• Microsoft, Google, and Amazon all sell computing capacity on the open market 

• Amazon Web services offers good combination of ease of use with customization
◦ http://qiime.org/tutorials/working_with_aws.html
◦

Analysis in the Cloud

http://qiime.org/tutorials/working_with_aws.html


Functional Prediction
• Technique: predict contents of novel genomes from known ones
• Goal: Use 16S data to infer functional profiles of metagenomes

• Purpose: identify functional make-up of microbial communities
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Functional Prediction
• Technique: predict contents of novel genomes from known ones
• Goal: Use 16S data to infer functional profiles of metagenomes

• Purpose: identify functional make-up of microbial communities

1 4 3 9 0 # of genes in genome with given functionality

3    0      14         1         0  
X

# of genome instances (OTUs) observed in a sample

3    0      42         9         0  # of functional instances in predicted metagenome for sample



• Technique: predict contents of novel genomes from known ones
• Goal: Use 16S data to infer functional profiles of metagenomes

• Purpose: identify functional make-up of microbial communities

• Check NSTI (Nearest Sequenced Taxon Index)

• Low values give better accuracy

• Choose a functional source relevant to your study

• E.g., KEGG Orthology, COG, etc

• To infer metagenomes: PICRUSt
• To assess findings: QIIME

Functional Prediction

1 4 3 9 0 # of genes in genome with given functionality

3    0      14         1         0  
X

# of genome instances (OTUs) observed

3    0      42         9         0  # of functional instances in predicted metagenome for sample



Assembly-Free Pipeline
• Several software tools exist, e.g., MG-RAST, MEGAN, Biobakery

• Biobakery suite (from Huttenhower lab, Harvard)
◦ Kneaddata: data QC and prep
§ FastQC (optional)

§ Trimmomatic
§ Bowtie against host

§ FastQC (optional)

◦ Metaphlan: taxonomic profiling
◦ HUMAnN2: functional profiling 
§ Also estimates pathway abundance and coverage



Assembly-Based Pipeline
• The pieces exist but no pipeline wrapper—yet

◦ Data QC and prep: FastQC, Trimmomatic, Bowtie, etc
§ Could use kneaddata

◦ Assembly Options
§ MegaHIT—blazing fast
§ MetaSPAdes—developed at UCSD (Pavel Pevsner)

◦ Taxonomic Profiling Options
§ PhyloPhlAn (Biobakery)
§ TIPP—developed at UCSD (Siavash Mirarab)

◦ Genomic Annotation Options
§ Prokka
§ Micronota—developed at UCSD (Rob Knight)

◦ Binning useful when combining samples (Concoct)


