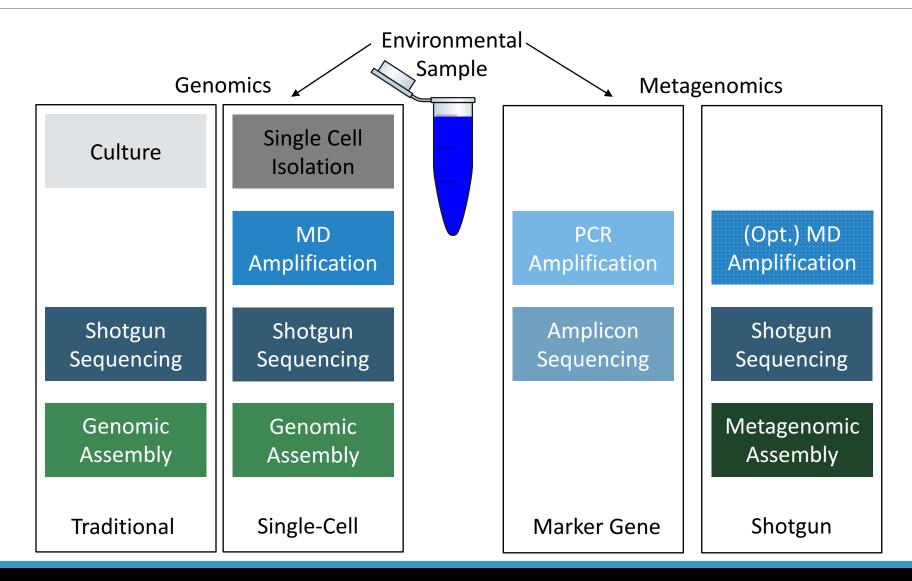
Choosing the Right Strategies for Conducting a Microbiome Study

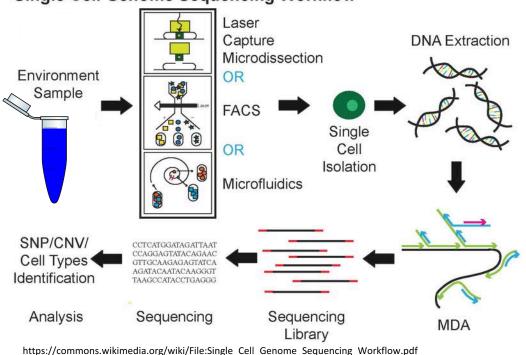

Amanda Birmingham

Center for Computational Biology & Bioinformatics University of California at San Diego

Microbial Genomics & Metagenomics

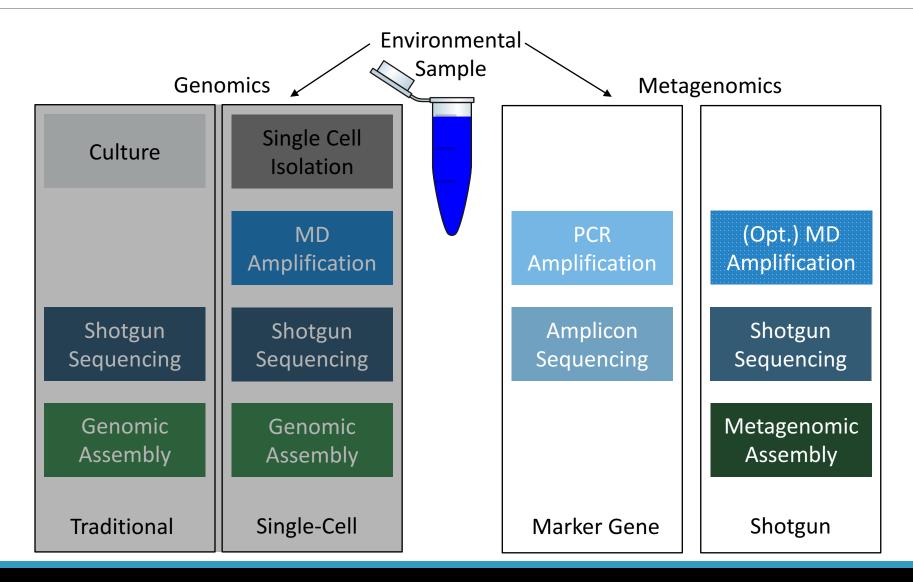
When to Use Traditional Genomics

- When you have:
 - Only one or a couple of microbes of interest
 - And they are culturable
 - And you care about their genome sequences, not their abundance in the sample(s)
- The good news:
 - This approach can identify plasmids associated with the bacterial chromosome
 - Software for *de novo* (from scratch) assembly of short reads into genomes is getting better
 - With high coverage, existing tools can sometimes reach ~98% completeness
- The bad news:
 - Repeat regions (like those from transposons) are really hard to assemble
 - 100% complete reference genomes still require specialized skills and protracted effort
 - Most microbes aren't easily culturable in the lab



When to Use Single-Cell Genomics

- When you need reference genome(s) and can't culture, e.g. functional analysis of soil microbes
 - Community is EXTREMELY heterogeneous (most common organism ~1% of total); shotgun won't assemble
 - Community members are too hard to culture (~1% grow in standard medium)
 - So: consider single-cell genomics to generate a reference database, then shotgun for abundance information

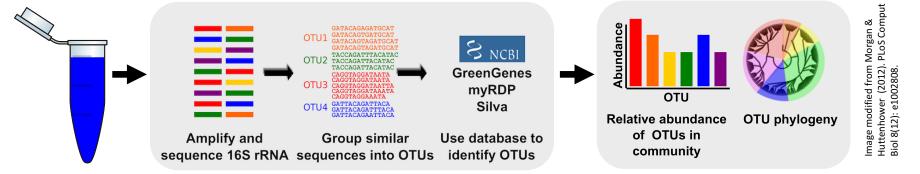

Single Cell Genome Sequencing Workflow

- When you have the time, money, and equipment
 - Having single-cell-level understanding of microbial communities is wonderful if we can get it!
- The good news:
 - See traditional genomics, plus ... this is really possible!
- The bad news:
 - Getting single cells is expensive and/or time-consuming
 - This gets around culture issues but not assembly ones
 - Lots of amplification is required, with potential for bias

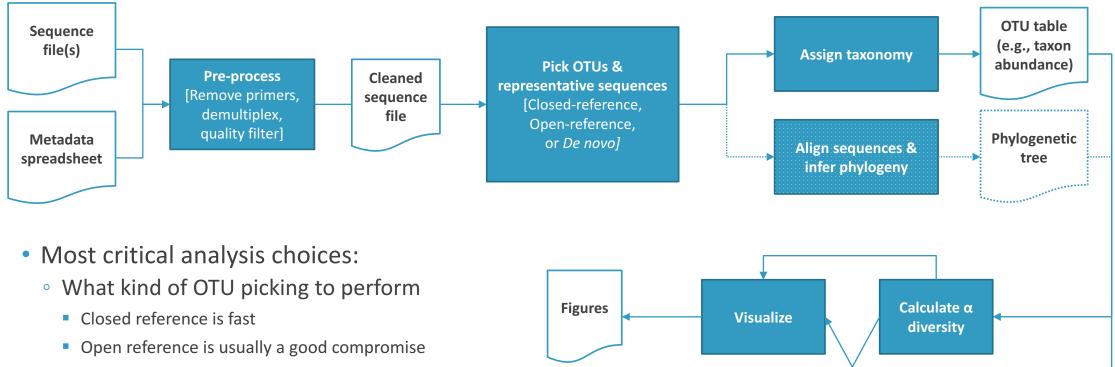
Microbial Genomics & Metagenomics

Marker Gene Metagenomics Basics

- Approach: PCR amplicons of a conserved constitutive gene (a "marker gene") to determine identity and abundance of microbes present
 - Usually the "conserved constitutive gene" of choice is 16S rRNA
 - The small sub-unit (SSU) of bacteria's ribosome
 - Excludes eukaryotic DNA as eukaryotes' SSU is 18S


- 16S rRNA is widely conserved across bacteria and archaea, providing shared primer sites
 - Yet also has 9 hypervariable regions: can be used to id different "species" and build phylogenetic trees
 - Not really species but Operational Taxonomic Units (OTUs)—groups of organisms defined *only* by sequence similarity
- Can't study fungi with 16S (they don't have it) nor 18S (evolves too slowly)
 - Internal transcribed spacer (ITS) is standard fungi marker gene

When to Use Marker Gene Metagenomics


- When your sample is MOSTLY made up of host DNA, e.g. tumor samples
 - Shotgun reads will also be mostly host DNA, with few left over for the microbes
 - Use 16S rRNA instead, as the primers exclude eukaryotic DNA from amplification
- The good news:
 - Target gene studies are *slightly* cheaper to prep and sequence than shotgun ones
 - Analysis software is mature, and many studies can be analyzed on a laptop
 - Known taxa can be detected with very low (100s of reads) sequence depth
- The bad news
 - No target gene distinguishes all microbes well
 - No other genome information (outside target gene) is captured

Marker Gene Analysis Workflow

P-values

Test differences

for significance

Calculate **B**

diversity

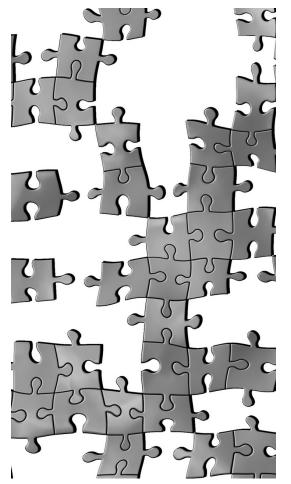
- De novo is necessary if no reference db available
- $\,\circ\,$ What α and β metrics to pick

UC San Diego

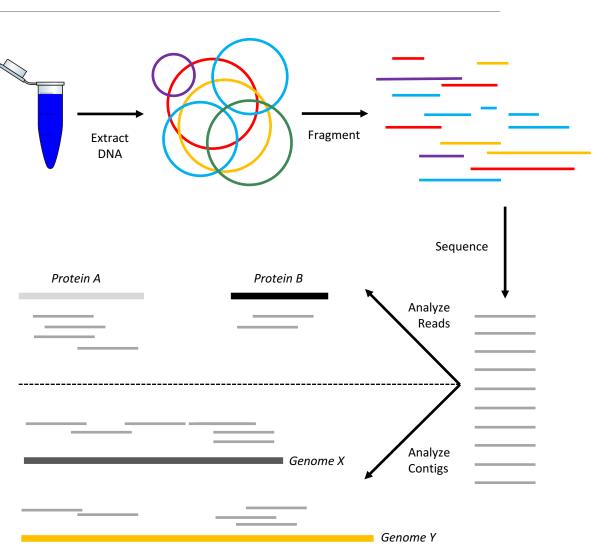
SCHOOL OF MEDICINE

Some are phylogenetically aware, some aren't

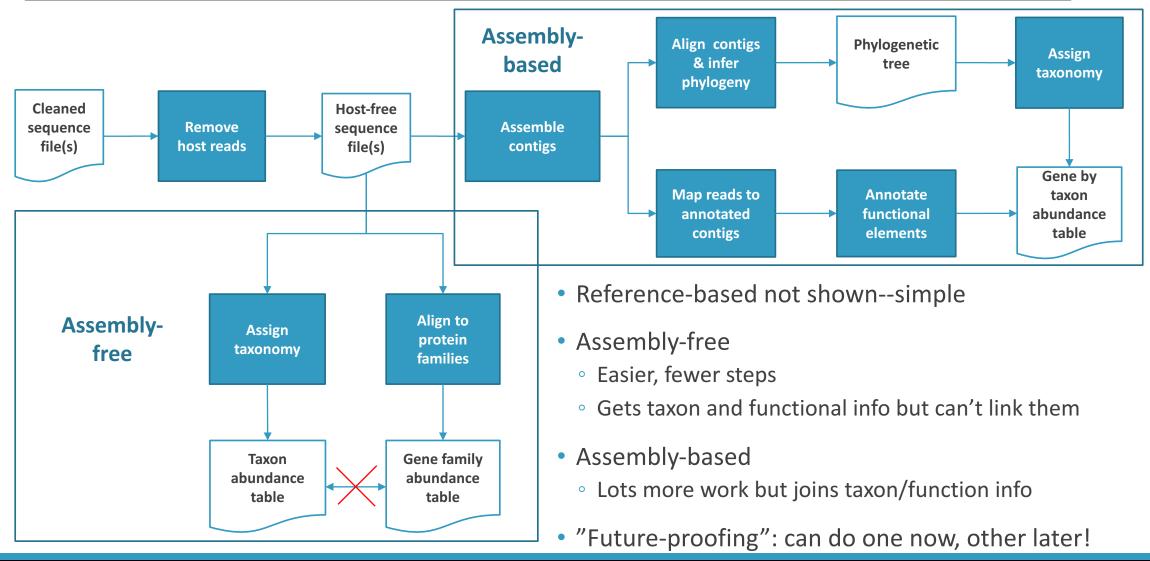
Common Issues in Marker Gene Studies


- Neglecting metadata
 - Analysis can not test for effects of, or discard bias from, features you didn't record!
- Picking novel 16S primers—not all created equal
 - Earth Microbiome Project recommends 515f-806r primers, error-correcting barcodes
- Not taking precautions to support amplicon sequencing
 - Some Illumina machines require high PhiX, low cluster density
- Selecting an inappropriate reference database
 - E.g., Greengenes (16S) reference database when sequencing ITS
- Expecting species-level taxonomy calls
 - Most OTUs only specified to family or genus level
- Using inappropriate statistical tests
 - Taxa abundance requires a compositionality-aware test like ANCOM
 - $\,\circ\,$ Differences in β diversity distances across groups requires test like PERMANOVA, not ANOVA

Shotgun Metagenomics Basics


- Just fragment and sequence, try to figure out what it means in analysis!
- Reference-based
 - Map shotgun reads to database of known, complete reference genomes
 - Find identity and abundance
 - Analogous to approach for single-organism RNASeq—but more complex
 - Usually not feasible: too few references known
 - Exceptions: human gut, mouth, vagina
- Assembly-free
 - Map reads to database of known marker genes to guess taxonomic identity
 - Translate reads and map to protein family database to find functionality
- Assembly-based
 - Assemble reads into (multiple) genomes—or at least contigs
 - Place contigs in phylogeny to find taxonomic identity
 - Detect genes, IncRNAs, operons: find functionality linked to identity

When to Use Shotgun Metagenomics


- When target genes can't tell your microbes apart
 - E.g., Sporosarcina psychrophila & Bacillus anthracis
- When you want microscopic eukaryotes too
 - Protists, fungi, algae
- When you want to see functional detail
- The good news:
 - Sequencing has gotten cheaper, so we can do more
 - Cloud computing, better aligners, and better assemblers make analysis possible for biologists
- The bad news:
 - Can't associate plasmids with hosts
 - Read analysis is limited, contig analysis is hard
 - Data is large and analysis tools are still maturing

Shotgun Analysis Workflows

CCBB

Common Errors in Shotgun Studies

- Not having analysis and storage plan
 - Shotgun sequencing data can easily be 10-50 Gb compressed
 - When uncompressed files are over 100 Gb, and analysis creates intermediate versions, doesn't take long to fill your hard drive
 - Both assembly-free and assembly-based approaches require lots of alignment
 - This is time-consuming on 10s to 100s of millions of reads, even with fast aligners
 - Assembly-based approaches are real memory hogs
- Failing to extract host reads
 - Unlike 16S, shotgun amplifies host DNA too
 - Must be aligned to host genome and removed
 - This is a big problem if you don't **have** a host genome
- Not filtering amplified duplicates
 - Amplifying low-abundance inputs creates uninformative duplicates
 - These can swamp real reads
- Throwing away raw reads
 - "Future-proofing" only works if you have the original data to reanalyze later!

Conclusions

- Microbiome research reinforces that life is inherently interconnected and interdependent
- Metagenomic studies allow insight into a whole interdependent community at once
- 16S metagenomics is a tried-and-true workhorse
 - But it is about ready to be put out to pasture for most experiments
- Shotgun metagenomics is no longer "bleeding edge"
 - But analysis stage can still cause some pain!
 - Assembly-free analysis is easier
 - Assembly-based gets us closer to what we really want to know
- Shotgun metagenomics offers best chance of "future-proofing" data collection

